设α1,α2,…,αs是线性空间v的一组向量,T是v的一个线性变换,证明:T(L(α1,α2,…,αs))=L(Tα1,Tα2,…,Tαs)

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/02 17:42:30
设α1,α2,…,αs是线性空间v的一组向量,T是v的一个线性变换,证明:T(L(α1,α2,…,αs))=L(Tα1,Tα2,…,Tαs)

设α1,α2,…,αs是线性空间v的一组向量,T是v的一个线性变换,证明:T(L(α1,α2,…,αs))=L(Tα1,Tα2,…,Tαs)
设α1,α2,…,αs是线性空间v的一组向量,T是v的一个线性变换,证明:T(L(α1,α2,…,αs))=L(Tα1,Tα2,…,Tαs)

设α1,α2,…,αs是线性空间v的一组向量,T是v的一个线性变换,证明:T(L(α1,α2,…,αs))=L(Tα1,Tα2,…,Tαs)
L是什么?线性组合?设L(α1,α2,…,αs)=a1*α1+a2*α2+…+as*αs;
T(L(α1,α2,…,αs))
=T(a1*α1+a2*α2+…+as*αs)
=a1*T(α1)+a2*T(α2)+…+as*T(αs)
=L(T(α1),T(α2),…,T(αs))

设α1,α2,…,αs是线性空间v的一组向量,T是v的一个线性变换,证明:T(L(α1,α2,…,αs))=L(Tα1,Tα2,…,Tαs) 设ε1,ε2,∧,εn是线性空间V的一组标准正交基,A是V上的线性变换,满足(Aα,Aβ)=(α,β),证明:Aε1,Aε2,L,Aε3是一组标准正交基. e1,e2,...,en是向量空间V的一组基,且向量α1,α2,...,αn能由e1,e2,...,en线性表示,则α1,α2,...,αnA线性无关 B线性相关 C是V上一组基 D以上都不正确 设W为数域F上的n维线性空间V的子集合,若W中元素满足1、 若α,β∈W,则α+β∈W;2、 若α∈W,λ∈F,则λα∈W.则容易证明:W也构成数域F上的线性空间.称W是线性空间V的一个线性子空间.这个到底是 设α是n维线性空间 V的线性变换,那么 α是双射 α是单位变换(×) 线性空间,线性变换,特征值与特征向量设V是复数域上的n维线性空间,s,t是V的线性变换,且st=ts.求证:(1)如果λ0是s的特征值,那么λ0的特征子空间V(λ0)是t的不变子空间;(2)s,t至少有一个公 此外,对线性空间的定义理解比较模糊,设V是数域F上的线性空间,V1V2是V的子空间,求证V1+V2也是V的子空间证明:考察集合V1+V2,其空是明显的.对于任意的α,β∈V1+V2,设α=α1+α2,α1∈V1,α2∈V2,β=β1+β 关于线性变换可逆的证明题设ε1,ε2,…,ε3是线性空间V的一组基,σ是V上的线性变换,证明σ可逆当且仅当σε1,σε2,…,σε3线性无关. 设n维向量空间V.有一组基αl,α2,…,αn,另外,α1,α1+α2,...,α1+α2+…+αn也是Vn的基.又设向量ξ关于前一组基的坐标是(n,n一1,...2,1).求ξ关于后一组基的坐标 判断题,设T为n维线性空间V的线性变换,V中向量组α1,α2,...,αm线性无关,则Tα1,Tα2,...Tαm线性无关.刘老师,为什么这句话是错误的呢? 设S是向量空间v的非空子集,若s对V的线性运算为封闭,则s是向量空间, 设a1,a2...an是n维线性空间的一组基,b1,b2...,bs是V的一组向量求解第13题 设α1,α2,α3是线性空间v的一组基(1)证明 β1=α1+α2+α3;β2=α1-α2+α3;β3=-α1+α2+α3也是v的基(2)求向量ξ=2α1-α2+5α3在基β1,β2,β3下的坐标需要详解 一道线性代数证明题设σ1,σ2,...,σs为s个两两不同的线性变换,证明在线性空间V中存在向量α,使得σ1α,σ2α,...,σsα两两不同.这题构造一晚上了,怎么也做不出来…… 1、设B是数域P上n维线性空间V的线性变换,B属于V,若B^(n-1)(a)!=0,B^n(a)=0,证明:a,B(a),B^2(a),……,B^(n-1)(a)是V的一组基,并求B在这组基下的矩阵. 1、设B是数域P上n维线性空间V的线性变换,B属于V,若B^(n-1)(a)!=0,B^n(a)=0,证明:a,B(a),B^2(a),……,B^(n-1)(a)是V的一组基,并求B在这组基下的矩阵. 线代题,线性空间和标准正交基的问题在R4中,α1=(1,1,1,1)^T,α2=(1,-2,0,0)^T,S={α∈R4|α⊥α1,α⊥α2},①试证S是R4的一个子空间②求S的一组标准正交基③扩充②所得的S的标准基成为R4的一组标准正交 设A:V→U是向量空间V到U的线性映射,证明:1、A(0)=02、A(-α)=-A(α)3、A(α-β)=A(α)-A(β)